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LEITER TO THE EDITOR 

Metal-insulator transition and self-similarity in the Aubry 
model 

K A Chao, R Riklund and G Wahlstrom 
Department of Physics and Measurement Technology, University of Linkoping, S-581 83 
Linkoping, Sweden 

Received 17 December 1984 

Abstract. The Aubry model near the critical region is analysed with the numerical renormali- 
sation group method. The transition is shown to be energy dependent and the self-similarity 
is demonstrated. 

Among recent work on almost periodic systems, the Aubry (1978) model has been 
studied the most. The model Hamiltonian is simply a one-dimensional tight-binding 
one with a sinusoidal modulation potential incommensurate with the lattice 

where Q is incommensurate to rr. Based on the localisation criterion of Thouless 
(1972), Aubry and Andr6 (1980) have shown that all states are localised if 2 t <  V, 
while all states are extended if 2 t>  V. Therefore, at any eigen energy there is a 
metal-insulator transition at the critical value 2t = V. On the other hand, Azbel (1979) 
has obtained the energy spectrum of the devil’s staircase type, with both localised and 
extended states separated by mobility edges. More controversy was added by Suslov 
(1982, 1983), who showed the absence of such a mobility edge in his renormalisation 
group study. In the last five years many authors have contributed to the dispute over 
whether there are mobility edges in the regime 2 t >  V (Sokoloff 1980, 1981a, Dy and 
Ma 1982, Soukoulis and Economou 1982). 

Another important feature of the Aubry model is the self-similarity of the energy 
spectrum. Besides the devil’s staircase structure mentioned above, Sokoloff (1981b) 
has shown that near the metal-insulator transition the band contains a hierarchy of 
gaps of every decreasing magnitude. In terms of the mathematical language, Bellissard 
and Simon (1982) have proved that the Aubry Hamiltonian (1) has a nowhere dense 
spectrum. In this letter we will present a renormalisation group calculation to clarify 
some microscopic properties of the Aubry model near the critical region 2 t=  V, 
especially regarding the metal-insulator transition and-the self-similarity. 

We consider the equation of motion of the Green function G( z),,,,, with z = E +iv  

(3) ( z - E O , + p ) G ( z ) n + p , n  = 6p,0+ tO,+p, n + p - I G ( Z ) n + p - l , n  + t O . + p , n + p + l G ( Z ) n + p + , , n  
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where EO, = E,,, &*, = t, and p = 0, *l,  *2, .  . . . From (3) it is easy to see that for 
fixed n, all the Green functions G(z),,,” with even m can be expressed in terms of the 
Green functions G(z),, with odd m, and vice uersa. Hence, we can eliminate half of 
the Green functions to obtain the equations of motion for the rest half of the Green 
functions 

( Z  - E L + u , p ) G ( z ) n + , , , , n  

where ul = 2‘ = 2, and 
I O  E:+ , , ,  = + ~ O , + ” , p , n + ” l p - l ( Z  - E:+”lp-l))-  f n + v l p - l , n + Y i p  

I O  
+ f : + v l p , n + u l p + I ( z  - E:+u, ,+I)-  f n + u , p + l , n + v , p ,  

(6) I O  t t + v , p , n +  Y,  (p*  I )  = t:+ v i p , n +  Y ,  p f I ( z  - E:+ I )  - t n +  ”,,* I .n+ v,( ,*  1 ) .  

By properly renormalising the site indices n + v l p  + n + p, the equation of motion (4) 
is mapped onto the original equation of motion (3) with renormalised site energies 
and hopping integrals. Equation (4) simply describes the behaviour of Green functions 
in a one-dimensional lattice with double lattice constant. Therefore, the hopping 
integral (6) between two lattice sites in the renormalised system is less than f:,nfl = t 
of the original system. 

We can repeat this process and the equation of motion at the a-step is 

( 2  - E : + u a p ) G ( Z ) n + Y a p , n  
- - 8 Y & , O +  t : + v a , , n + ~ ~ ~ , - , ) G ( z ) “ + ” ~ ( , - l , , n  

+ t ~ + v “ , , n + v , ( p + l ) G ( Z ) n + v , ( p + l ) . n ,  (7 )  

where vm = 2”. The new site energy E:+,,-,, and hopping integral t :+vap ,n+v(p* , )  are 
related to their old counterparts via two equations of the same form as ( 5 )  and (6). 
Since each renormalisation operation doubles the lattice constant, the fixed point is 
determined by f ~ + Y , p , n + v , ( p i l ) + O  as a -+W. The Green functions at the fixed point 
are then diagonal 

In the actual calculation the fixed point is reached when the computer sets the small 
hopping integral (< 1 0-39) equal to zero. Near the critical region 2t b V, a can be as 
large as 19-20 in order to reach such a small hopping integral. That is, we need almost 
X = lo6 sites to get convergent results. 

In this letter we only need the diagonal Green functions G(z),,,,,, from which one 
obtains the density of states 

The numerical computation scheme is very tedious and has been given elsewhere (Chao 
et a1 1984). Earlier, Soukoulis and Economou (1982) have set V = 1.9, t = 1 and Q = 0.7 
in their calculation and found nine well defined energy bands. We will use this result 
as the starting point of our investigation. We first study the critical case V =  1.9 and 
t = 0.95 for Q = 0.7. Since 9 9  = 6.3 = 2v, if we plot the density of states P ( E )  with an 
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energy increment AE not sufficiently small, we obtain nine bands distributed symmetri- 
cally with respect to E = 0. With increasing E these bands are labelled as band 1 to 
band 9. The bandwidth decreases rapidly with increasing I E J .  

Now we consider the number 6 = NQ - 27rM for positive integers N and M. The 
combination (N;  M ;  6 )  = (9; 1 ; 0.002 676) corresponds to the gross nine-band structure 
mentioned above. If we keep c<0.0025, then we found the following interesting 
combinations: 

(N: M: 6 )  = (368; 41; 0.001 687), (377; 42; 0.000 989), (745; 83; 0.000697), 

(754; 84; 0.001 979), 

(1490; 166; 0.001 394), 

( 1  113; 124; 0.002 384), ( 1  122; 125; 0.000 292), 

(1499; 167; 0.001 282), . . . 
This finding suggests that if we continuously decrease the energy increment he, the 
density of states should be resolved into 9 bands, 368 bands, 377 bands, 745 bands, 
754 bands, 11 13 bands,. . . . This is indeed what we have obtained as shown in figure 
1 where the density of states (in logarithmic scale) of the bands 6,7,  8 and 9 (because 
of symmetry the same structure for bands 4, 3, 2 and 1) are plotted. Each band splits 
into exactly 41 subbands with the positions of the outermost subbands marked by 
numbers. In order to resolve these structures, we have to use very small AE =0.0005 

-4 I '  

Energy 

Figure 1. The density of states (logarithmic scale) for bands 6 ,  7, 8 and 9. Numbers mark 
the outermost peak positions. 
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for band 6 and As = 0.000 002 for band 9. The middle plot (indicated by 0.95) in figure 
2( a )  demonstrates the subband structure of band 5 for E > 0. There are 20 subbands 
in this energy region, and so altogether 40 subbands in band 5. The missing subband 
at E = 0, as we conjecture, is related to the unusual behaviour discussed by Avron and 
Simon (1982). We thus obtain the total number of subbands 4 3 + ( 8 ~ 4 1 ) = 3 6 8  as 
predicted. Although in principle we can decrease A s  (to much less than 0.000 002) to 
resolve even finer structure, it is not practical to do so concerning the computer time. 
Nevertheless, it is reasonable to regard our result as a direct evidence of the devil’s 
staircase character of the Aubry model. Similar evidence was obtained by Azbel and 
Rubinstein (1983) for the Kronig-Penny model with an incommensurate potential. 

0.975 - 
tr0 .96  - 

-4 

0.95 - - 
-4 

0 . 9 2 5  - 
0.96 

- 4  

lbl 

0 0.05 0.1 0.1 5 0 0.006 0.012 
E E 

U 

Figure 2. The density of states with resolution A& = 0.0005 (a)  and A &  = 0.000 05 ( b )  for 
various values of 1. Reference values -4 (a) and 0 ( b )  are indicated for different DOS curves. 

The density of states in the vicinity of the critical region 2t = V are shown in figure 
2 for As = 0.0005 ( ( a )  with reference value -4 marked for each plot) and for A s  = 
0.000 05 ((b) with reference value 0 marked for each plot). The values of t for various 
curves are also indicated. At the level of resolution A E  = 0.0005, we see in figure 2(a) 
that a deviation from the critical 2t = V (here we have 2t/ V =  1.95/1.9 = 1.0263 and 
1.85/ 1.9 = 0.9736) causes the merge of subbands around the centre of the band 5. This 
phenomenon also appears in other bands. Therefore, across the critical value 2t = V 
the transition can hardly be energy independent as claimed by Aubry and AndrC (1980). 
We will return to this point later. At higher resolution A &  = 0.000 05 we have investi- 
gated the region around E = O  of band 5, and have found the beautiful fine structure. 
The results are demonstrated in figure 2( b)  for t = 0.94, 0.95 and 0.96. 

In order to illustrate the energy dependence of the transition across the critical 
value 21 = V, we have calculated not only the local density of states p E , ( s )  = 
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-( 1/ T )  lim,,.+o Im G( E + iT),,, from the imaginary part of the Green function, but also 
its real part Re G E , ( E ) .  For given value of E, the relation P € ( E )  against Re GE(E) is 
shown in figure 3 for ~=0.002805 (plot a), 0.002971 (plot b), 0.004396 (plot c), 
0.160 192 (plot d), 0.159 253 (plot e) and 0.158 5167 (plot f). The value of t is 0.96 for 
a and d, 0.95 for b and e, and 0.94 for c and f. For each value of E, the result is 
represented by a dot. The energies for cases d, e and fare the positions of the outermost 
peak in band 5 for t = 0.96, 0.95 and 0.94, respectively. The energies for cases a, b 
and c lie deep in the middle of band 5 .  While cases d, e and f a re  almost exactly the 
same, cases a, b and c are drastically different (notice the logarithmic scales). Hence 
across the critical value 2t = V ( t  = 0.95), the change of physical properties is energy 
dependent. In other words, the transition is energy dependent. 

-4 - 2  0 -2  0 -2 0 2 
l o g l R e ( G E l ~ l ) I  

Fipure 3. Characteristic properties of Green functions for various eigen energies (details 
see text). The full lines are for log{p,(e)}=loglRe G E ( & ) ( .  

Finally, we provide another important piece of information regarding the charac- 
teristic feature of the transition. The step of renormalisation to reach the fixed point 
is 7-9 for all the cases d, e and f, is 11-12 for case c, is 15-16 for case b, and is 19-20 
for case a. Evidently, across the critical value 2 t  = V, there is practically no change of 
localisation in the energy region near the band edges of each band. On the other hand, 
in the vicinity of the band centre, a drastic delocalisation of the electronic wavefunction 
occurs when 2t/ V increases from 1.88/ 1.9 = 0.989 47 to 1.92/ 1.9 = 1.010 52 across the 
critical value 2t/ V = 1. The transition is certainly energy dependent. 

This work is financially supported by the Swedish Natural Science Research Council 
under grant No NFR FFU 3996-121. 



L408 Letter to the Editor 

References 

Aubry S 1978 in Solid Stare Sciences: Solitons and Condensed Matter Physics vol 8, ed A P Bishop and T 

Aubry S and AndrC G 1980 in Ann. Israel Phys. Soc. vol 3, ed C G Kuper 133-64 
Avron J and Simon B 1982 Bull. Am. Math. Soc. 6 81 
Azbel M Ya 1979 Phys. Rev. Lett. 43 1954-7 
.&bel M Ya and Rubinstein M 1983 Phys. Rev. B 27 6530-3 
Bellissard J and Simon B 1982 J. Funct. Anal. 48 408-19 
Chao K A, Riklund R and Liu Youyan 1985 to be published 
Dy K S and Ma T C 1982 J. Phys. C: Solid State Phys. 15 6971-80 
Sokoloff J B 1980 Phyr. Rev. B 22 5823-8 
- 1981a Phys. Rev. B 23 2039-41 
- 1981b Phys. Rev. B 23 6422-9 
Soukoulis C M and Economou E N 1982 Phys. Rev. Lett. 48 1043-6 
Suslov I M 1982 Zh. Eksp. Teor. Fiz. 83 1079-88 (Sou. Phys.-JETP 56 612-7) 
- 1983 Zh. Eksp. Teor. Fir. 84 1972-805 (Sou. Phys.-JETP 57 1044-51) 
Thouless D J 1972 J. Phys. C: Solid State Phys. 5 77-1 13 

Schneider (Berlin: Springer) pp 264-77 


